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Abstract

The present is an overview of recent data that describes the genetic underpinnings of the
suppression of cancer metastasis. Despite the explosion of new information about the
genetics of cancer, only six human genes have thus far been shown to suppress metastasis
functionally. Not all have been shown to be functional in breast carcinoma. Several additional
genes inhibit various steps of the metastatic cascade, but do not necessarily block
metastasis when tested using in vivo assays. The implications of this are discussed. Two
recently discovered metastasis suppressor genes block proliferation of tumor cells at a
secondary site, offering a new target for therapeutic intervention.
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Introduction
Colonization of distant tissues by tumor cells repre-
sents the most dangerous attribute of cancer. When
breast carcinomas remain confined to breast tissue,
cure rates exceed 90%. As cells spread, however,
long-term survival decreases depending upon the
extent of and the sites of colonization. Metastases in
visceral organs and brain are the most life-threatening,
with 5-year survival rates usually less than 20% [1].
Thus, in order to increase survival, prevention of metas-
tasis and more effective treatment of already estab-
lished metastases are necessary. Both will be possible
only after we have a more thorough understanding of
the biologic, biochemical, and molecular basis of
cancer spread. Although the focus of the present

review is on the genes that regulate metastasis, the
context under which those genes operate is briefly
addressed.

Metastasis is defined as the progressive growth of cells at
a site that is discontinuous from the primary tumor. The
route of spread is irrelevant in this definition. Cells can dis-
perse via blood vasculature, lymphatics, or within body
cavities. Metastatic cells are a specialized subset of tumor
cells within a primary tumor mass that have acquired the
ability to complete the multistep metastatic cascade (for
review [2,3•,4–7]). In brief, these cells migrate, dissemi-
nate, extravasate, and eventually proliferate at a discontin-
uous secondary site(s). If a cell fails to complete any step
in the metastatic cascade, then it is not metastatic.

MMP = matrix metalloproteinase; NDP = nucleoside diphosphate; TGF = transforming growth factor.
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Failure to metastasize can be due to inherent deficiencies
within tumor cells themselves (ie genetics) or to defective
responses to the host environment (ie epigenetics). This
concept is not new. Indeed, Paget [8•] advanced the
notion over a century ago when he documented the non-
random distribution of breast carcinoma metastases.
Paget’s explanation was that the tumor cell or ‘seed’
would grow only when cultivated in an appropriate organ
or ‘soil’. His agrarian analogy seems quaint in this era of
molecular biology and genomics, but the fundamental prin-
ciple has withstood the test of time; formation of metasta-
sis depends upon interaction between tumor cells and
host cells. Recently, some of the molecules that are
responsible for organ-specific colonization have begun to
be elucidated [9–13].

Several questions arise when one contemplates studies of
breast cancer genetics, particularly as related to metasta-
sis. How can one expect to define the genetic or biochem-
ical basis of metastasis when it is clear that multiple genes
and proteins are involved? Also, what can be done to
compensate for the genomic instability associated with
tumor progression? In other words, are we hunting a
moving target? Are the same genes responsible for con-
trolling metastasis in different histologic types of breast
carcinoma (ie infiltrating ductal versus lobular carcinoma)?
How does one identify metastasis-associated genes when
environmental context is so important?

Historically, the experimental approach to answering
these questions has been reductionist: mimic metastasis
component steps (eg proliferation, adhesion, invasion,
angiogenesis, evasion from immune cell killing, etc) in
vitro, and study the gene(s) and protein(s) responsible
for controlling each step. This approach has led to a
tremendous understanding of fine molecular detail for
each step, but translation to clinical utility has been
limited for the reasons outlined below. Nonetheless, the
genetic underpinnings are being elucidated, and funda-
mental biologic mechanisms behind the metastatic
process are being unraveled.

Oncogenesis and tumor progression are
related, but distinct, phenotypes
One area of major confusion regarding metastasis-asso-
ciated genes has been the failure by some to recognize
the important distinction between tumor formation and
metastasis. Tumorigenesis and oncogenesis refer to a
cell’s ability to proliferate continuously in the absence of
persistent stimulation by the triggering carcinogenic
agent(s). Tumor progression is the evolution of already
tumorigenic cells (populations) towards increasing malig-
nancy. The distinction is crucial when considering
whether a gene is important in controlling steps associ-
ated with malignancy as compared with whether that
gene is involved in tumor formation.

The distinction between malignant and metastatic is more
subtle. Pathologists characterize malignancy on the basis
of several morphologic attributes, including less differenti-
ated cytology, vascularity, necrosis, mitotic index, aneu-
ploidy, and nuclear : cytoplasmic ratio. The incontrovertible
hallmarks of malignancy are invasion of cells though a
basement membrane and/or metastasis. All other charac-
teristics used to label a tumor (and the cells within it) as
malignant have exceptions [14]. For example, morphologi-
cally indolent cells may be behaviorally malignant and vice
versa. Clearly, parameters associated with pathologic
examination are invaluable when predicting the probability
for local, regional, or distant recurrence in a clinical setting
[15], but they are limited with regard to cause/effect rela-
tionships for genes.

In the context of a multistep, multigenic cascade, it is criti-
cal to recognize that the terms invasiveness and adhesion
are not equivalent to metastatic propensity. Both invasion
and adhesion are necessary, but not sufficient for metasta-
sis. Cells that are efficient at either or both, but which lack
the ability to complete any other step of the metastatic
cascade, are nonmetastatic [16]. Therefore, correlations
of genetic expression with a particular step in the metasta-
tic cascade may lead to erroneous conclusions. This can
occur in two directions. Inhibition of a step in metastasis,
such as invasion, does not necessarily translate to com-
plete inhibition of metastasis in vivo. Likewise, at least two
recent papers [17••,18••] have demonstrated that non-
metastatic cells exhibit equal invasiveness (and a variety of
other parameters) to their metastatic counterparts. The
implication is simple; in vitro assays, as surrogates of
metastasis, are not 100% predictive.

Taken together, these points emphasize the importance
for distinguishing each of these phenotypes. Tumor-
suppressor genes dominantly inhibit tumor formation when
wild-type expression is restored in a neoplastic cell. By
definition, then, metastasis should also be suppressed
(because the cells are nontumorigenic). Metastasis-
suppressor genes, on the other hand, block only the ability
to form metastases. Restoring expression of a metastasis-
suppressor gene would yield cells that are still tumori-
genic, but that are no longer metastatic. From
experimental and treatment perspectives, identification of
suppressors of metastasis is much simpler than identifying
metastasis-promoting genes. This is because it takes only
one gene to block metastasis, whereas it takes the coordi-
nated expression of multiple genes to allow metastasis. In
experimental systems, it is fairly easy to find associations
with metastatic ability, but it is difficult to prove that a par-
ticular gene is essential. For example, if one were to trans-
fect a bona fide metastasis-promoting gene (ie one that
promotes invasion) into a cell that already contains a
defect in another gene (for instance, one that is required
for angiogenesis), then the transfected cell would remain



Breast Cancer Research    Vol 2 No 6 Welch et al

nonmetastatic. In contrast, introduction of a gene that dis-
rupts any step in the metastatic cascade would render
cells nonmetastatic.

We recently reviewed the literature in breast cancer [19••]
and found that differential expression of over 150 genes
had been correlated with breast cancer development
and/or progression. To date, however, only six human
metastasis-suppressor genes have been demonstrated to
have functional activity using in vivo metastasis assays:
NME1 [20•,21], KiSS1 [22•,23], KAI1 [24•,25], CAD1
[26•,27], BRMS1 [28], and MKK4 [29••]. The following
discussion summarizes the key information related to the
discovery, activity, and mechanisms of action of these
metastasis-suppressor genes.

Nm23
The first cloned metastasis-suppressor gene, Nm23, was
identified in the murine K1735 melanoma using subtrac-
tive hybridization, because its expression was inversely
correlated with lung colonization. Expression of the human
homolog Nm23-H1 (also known as NME1) is decreased
in many, but not all late-stage, metastatic human cancers
(for review [20•,30]). Decreased expression is the key
parameter that determines metastatic potential, and may
occur through a variety of mechanisms, not necessarily
loss of heterozygosity [30]. The long-term prognostic
value of this gene has been questioned in some studies
[31,32]. Nonetheless, NME1 is a bona fide metastasis-
suppressor gene in human breast carcinoma, because
transfection of metastatic MDA-MB-435 cells suppressed
metastasis from an orthotopic site in an experimental
mouse model [33]. Transfection into other cell lines has
also resulted in metastasis suppression (for review [30]),
including the human breast carcinoma cell line
MDA-MB-435 and the rat mammary adenocarcinoma
MTLn3. In vitro assays of control and Nm23 transfectants
have consistently pointed to decreased motility, invasion,
and colonization.

The mechanism of action for Nm23 remains unknown.
Nm23 is a member of the nucleoside diphosphate (NDP)
kinase family of proteins [34]. NDP kinases are ubiquitous
and catalyze the transfer of γ-phosphates, via a phospho-
histidine intermediate, between nucleoside and deoxynu-
cleoside triphosphates and diphosphates. However, NDP
kinase activity can be dissociated from its metastasis-sup-
pressor function [35,36]. Some recent reports suggest
that NME1 may control cell cycle progression [37], and
histidine-dependent protein phosphorylation [38,39] and
transcription [34,40]. The Nm23 story becomes more
complicated, because five additional family members have
recently been identified and cloned (Nm23-H2/NME2,
Nm23-DR, Nm23-H4, Nm23-H5, and Nm23-H6). Of
these, only NME2 has been tested for its role in metasta-
sis, and the results are controversial [41–47].

KiSS1
Metastasis of human melanoma cell lines C8161 and
MelJuSo is inhibited after introduction of an intact human
chromosome 6, but tumorigenicity is unaffected [48,49].
KiSS1 was cloned following subtractive hybridization that
was performed to compare mRNA expression in chromo-
some 6-C8161 cells with that in parental C8161 cells.
Preliminary data using cell lines indicates that KiSS1
expression is lost as melanoma cells convert from radial to
vertical growth phase (benign to malignant transformation)
[22•], but more extensive clinical studies have been
slowed due to lack of suitable antibodies.

Because KiSS1 maps to chromosome 1q32 [22•,50] and
because deletions and rearrangements of the long arm of
chromosome 1 have been associated with breast cancer
progression [19••], we tested whether KiSS1 would sup-
press metastasis of the human breast ductal carcinoma
cell line MDA-MB-435, which does not express KiSS1
[51]. Transfection resulted in suppression of metastasis
from the mammary fat pad of athymic mice, whereas
vector-only transfectants were unaffected. Likewise,
tumorigenicity was not suppressed.

The mechanism of action for KiSS1 has not yet been deter-
mined, although its ability to suppress metastasis has been
demonstrated in six independently derived human cancer
cell lines of melanoma and breast origin [22•,23,51]. On
the basis of the cDNA sequence, the predicted KiSS1
protein is a hydrophilic, 164-amino-acid protein with molec-
ular mass of 15.4kDa. The sequence is novel, having no
strong homology to any known human cDNA sequences. A
recent report suggests that KiSS1 may differentially regu-
late matrix metalloproteinases (MMP)s. Yan and Boyd [52]
recently showed that KiSS1-transfected HT1080 cells
showed specific downregulation of MMP9 transcription,
whereas MMP2 transcription remained unchanged.

KAI1
Kai1 (also known as CD82 or C33) is a member of the
tetraspanin superfamily of adhesion molecules, and KAI1
was recently discovered to be a prostate cancer metasta-
sis-suppressor gene, mapping to chromosome
11p11.2-p13 [53,54]. Kai1, like other members of the
tetraspanin superfamily, has been associated with metasta-
tic potential of nonsmall-cell human lung, liver, pancreatic
bladder, breast, prostate, and esophageal carcinomas and
melanomas (for review [55]). Downregulation of the KAI1
gene is observed during the progression of human prosta-
tic cancer, but mutations or allelic loss do not appear to be
the major means for alteration [56]. Mechanisms in other
tumor types have not been so extensively evaluated.

The role of KAI1 in breast cancer metastasis has been
implicated by several studies. KAI1 mRNA expression
progressively decreased in a panel of human cell lines
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representing a continuum from nearly normal breast cells
(MCF10A) to highly metastatic cells (MDA-MB-435) [57].
Transfection of KAI1 into MDA-MB-435 cells suppressed
metastasis from the mammary fat pad [25]. However, the
cell lines did not maintain transgene expression levels fol-
lowing in vivo growth.

The mechanism of action of KAI1 is not completely under-
stood. Several preliminary reports suggest that expression
of KAI1 decreases the both the invasiveness and motility
of cells in vitro [58,59]. These studies also showed that
KAI1 transfectants exhibited enhanced calcium-indepen-
dent aggregation, suggesting that KAI1 might alter cell–
cell interactions.

CAD1
E-cadherin (encoded by the CAD1 gene inhumans) is a
cell-surface glycoprotein that is involved in calcium-depen-
dent cell–cell adhesion. Reduced levels of E-cadherin are
associated with decreased adhesion and increased grade
of epithelial neoplasms, whereas increased E-cadherin
expression (induced by transfection) decreases motility
and invasiveness [60]. Mutations in E-cadherin and the
associated protein α-catenin have been associated with
acquisition of the invasive phenotype [61]. High E-cad-
herin levels inhibit shedding of tumor cells from the
primary tumor, and thus E-cadherin is considered a metas-
tasis-suppressor [26•,61–64]. However, there is also evi-
dence that it can function as a tumor-suppressor gene
[27,61,62].

A specific role for E-cadherin in breast cancer progres-
sion has not yet been established. However, mutations
were detected, using polymerase chain reaction single-
strand conformation polymorphism assays, in lobular car-
cinomas [65,66]. Interestingly, infiltrating ductal and
medullary breast carcinomas showed few mutations. This
highlights the point made above regarding grouping all
tumors together.

It has even been suggested that E-cadherin function could
be restored by treatment with tamoxifen [67], but whether
this takes place in a clinical setting has not yet been
explored to our knowledge.

BRMS1
Introduction of a normal, neo-tagged, human chromosome
11 into MDA-MB-435 cells suppressed metastasis
without affecting tumorigenicity [68], leading to the
hypothesis that a metastasis-suppressor gene(s) resides
on chromosome 11. Differential display was performed in
order to identify those genes and a novel gene, BRMS1
(breast metastasis suppressor 1), was cloned [69••].
Transfection into MDA-MB-435 and MDA-MB-231 breast
carcinoma cell lines suppressed metastasis without affect-
ing tumorigenicity in a mouse model. The gene mapped to

11q13.1-q13.2, a region that is frequently altered in late-
stage breast carcinoma [69••]. Following transfection,
BRMS1 restored gap junctional intercellular communica-
tion between cells, whereas vector-only transfectants still
did not communicate in this manner. BRMS1 transfec-
tants were also significantly suppressed for motility in
vitro. No data regarding expression or mutation patterns in
human cancers yet exist.

MKK4
The introduction of a discontinuous, approximately 70-cM
portion of human chromosome 17 significantly suppresses
the metastatic ability of AT6.1 rat prostate cancer cells
without affecting tumorigenicity [18••]. AT6.1 cells that
contain the approximately 70-cM region escape from the
primary tumor and arrest in the lung, but are growth inhib-
ited unless the metastasis-suppressor region is lost [18••].
A combined differential expression and candidate gene
approach identified the MKK4/SEK1 (mitogen-activated
protein kinase kinase 4/stress-activated protein/Erk
kinase 1) gene as a candidate metastasis-suppressor
gene that is located within the approximately 70-cM region
[29••]. Transfection of an MKK4/SEK1 expression con-
struct significantly suppressed metastasis without affect-
ing primary tumor growth. In vivo studies showed that
AT6.1 cells that express the MKK4/SEK1 transgene reca-
pitulate the dormant phenotype conferred by the approxi-
mately 70-cM region of chromosome 17 [29••].

Previous studies had identified MKK4/SEK1 as a candi-
date tumor-suppressor gene (for review [29••]). These
studies identified homozygous deletions and other inacti-
vating mutations in MKK4/SEK1 in a small percentage of
lung, pancreatic, and breast cancer cell lines and/or
xenografts. Importantly, MKK4/SEK1 can be an indepen-
dent target for loss of heterozygosity (ie its inactivation is
not just a byproduct of large deletions of the nearby p53
gene). Recent studies using transgenic approaches (for
review [29••]) found that disruption of the MKK4/SEK1
gene caused embryonic death in mice, demonstrating a
requirement for MKK4/SEK1 in development. These
studies also included the analyses of cells with a homozy-
gous deficiency in MKK4/SEK1, and demonstrated that it
is required for the normal regulation of cellular responses
to environmental stress.

Colonization of the secondary site and future
directions
The purpose of all of the research highlighted in this review
has been to improve cure rates and patient quality of life. It
has been argued that agents that prevent metastasis will
be meaningless, because the ‘horse will already have
escaped the barn’. Administration of a preventive agent for
an event that has occurred before diagnosis would indeed
be useless. However, for inoperative lesions in an adjuvant
setting, metastasis prevention may have a role.
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Attention, then, turns to treatment of established metas-
tases. In essence, all nonsurgical cancer therapy currently
in use is essentially for this purpose. Once a tumor is
removed, any additional treatment is aimed at eliminating
microscopic or detectable systemic disease. What limits
the current approaches is tumor heterogeneity, plasticity
of the tumor cell response, and ineffective drug targeting.

How, then, will understanding the genetic basis of metas-
tasis overcome these limitations? The answer is alluded to
in some recent studies from our laboratories. In short,
independently discovered metastasis suppressors for
prostate carcinoma and melanoma both inhibit the forma-
tion of metastases by blocking growth at the secondary
site [17••,18••]. In these studies, melanoma cells carrying
chromosome 6 or rat prostatic carcinoma cells carrying
chromosome 17 followed in spontaneous metastasis
assays in mice. For instance, chromosome 17-expressing,
tagged cells were found as microscopic metastases in the
lungs at rates comparable to the number of detectable
metastases produced by the metastatic parental cell line.
The chromosome 17-expressing, tagged cells could be
retrieved from the lungs and expanded in culture, demon-
strating their vitality. No evidence was found for antiangio-
genesis by the chromosome 17 hybrid cells, indicating a
lack of colonization (ie not angiogenesis) as a primary
mechanism. For the chromosome 6-expressing, tagged
melanoma cells, in vitro explants of pulmonary micro-
metastases were injected into mice at an orthotopic site.
The mice developed tumors that grew at a rate similar to
that of the original cell line, further demonstrating that
growth in the primary and secondary sites are, to some
degree, differentially regulated. In other words, the metas-
tasis-suppressed cells complete every step of the
metastatic cascade before proliferation at the secondary
site to form macroscopic metastases.

Although the existence of control mechanisms at this step
of the metastatic cascade have long been inferred on the
basis of logic, these data are the first hints at a molecular
target. Neither of these genes could have been discovered
without studying the entire metastatic process, because no
in vitro assays yet recapitulate metastasis. Indeed, our lab-
oratories are working hard to develop such assays.
Nonetheless, these results show that in vivo assays still
have a role and that novel, interesting, and potentially clini-
cally relevant genes can be discovered by using them.

A second example of impaired colonization that is poten-
tially applicable to growth at a secondary site is found in
the Nm23 literature. Colonization of Nm23-transfected
K1735 melanoma and MDA-MB-435 human breast carci-
noma cells in soft agar was reduced as compared with
control transfectants, despite the observations among all
transfection studies reported to date that primary tumor
sizes are equivalent.

The cytokine transforming growth factor (TGF)-β has been
reported to be inhibitory to cell growth of many normal
cells, but recently has been widely reported to stimulate
growth or colonization of more advanced or metastatically
competent cells (for review [70,71]). Addition of TGF-β to
soft agar cultures of control- and Nm23-transfected cells
recapitulated this trend; TGF-β stimulated by several-fold
the colonization of metastatic, control transfectants, but
was generally without effect on the Nm23 transfectants
[33,72]. It is hypothesized that in a secondary site (where
locally produced growth factors and cell–cell interactions
may be different than those at the primary site) the cancer
cells, which can utilize a widely available growth factor
such as TGF-β as a stimulant, would have a metastatic
advantage. Other cytokines, such as IL-6, have also been
reported to exhibit a similar switch to the stimulation of
aggressive cancer cells. The mechanism of the TGF-β
‘switch’ is unknown, but is of potential translational rele-
vance. Investigations in other model systems have identi-
fied TGF-β-induced alterations in cell–cell interactions in
the liver [73], production of antiapoptotic proteins [74],
enhancement of proteinase activity [75,76], and induction
of angiogenic factor production [77]. In bone metastasis,
TGF-β is produced by osteoclasts and induces parathyroid
hormone-related protein production by tumor cells in a pos-
itive feedback loop [78,79]. Other non-TGF-β-related
studies of colonization also point to a myriad of potential
control points. The most amazing aspect of this list is its
overlap with the regulation of more traditionally studied
aspects of metastasis: adhesion, proteolysis, and motility.

Colonization in various models has been influenced by
adhesion proteins such as CD44 [80], α6 integrins
[81,82], galectin-3 [83], lung dipeptidyl peptidase [84],
and N-cadherin [85], the latter pointing not only to adher-
ence, but also to a cellular epithelial/mesenchymal transi-
tion [86]. The target of many adhesion processes, the
stroma or extracellular matrix, is also reported in the colo-
nization literature. Proteinases, such as MMPs and plas-
minogen activators, have been implicated in colonization,
not only to include matrix degradation, but also for effects
on tumor dormancy [87,88]. Growth factors and their
receptors such as c-met and insulin-like growth factor
receptor have been implicated in colonization [89,90].
Importantly, overexpression of fibroblast growth factor in
MCF7 breast carcinoma cells facilitated dissemination
from the primary tumor, but not lung colonization [91],
showing that not any factor can be assigned to this phe-
notype. Potential colonization regulatory points outside of
the traditional invasion arena include apoptosis and angio-
genesis [92,93].

These data imply that whatever gene(s) and protein(s) are
responsible could be exploited at two levels in the clinic.
First, a mimetic could be used to prevent establishment of
new metastases. This is demonstrated by the preclinical
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studies performed using animal models. Second, a
mimetic could block growth of the metastases and,
perhaps, even cause the metastases to regress. The data
also imply that many of the traditional components of
metastasis research could be relevant to the study of colo-
nization at the secondary site. They also highlight the need
for better models.

The genetics of metastasis in general, and breast cancer
specifically, is complex and still poorly understood. Although
new genes/proteins are being identified at an increasingly
rapid rate, a comprehensive and unifying model for interac-
tions between them will require more research.
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