
Introduction

Ductal carcinoma in situ (DCIS) is a malignant epithelial 

proliferation confi ned by myoepithelial cells and the 

basement membrane of breast ducts and is a non-obligate 

precursor to invasive carcinoma of the breast. Th e 

reported incidence of DCIS, once a rare diagnosis, has 

increased since the introduction of mammographic 

screening programs and has been reported to account for 

approximately 25% of new diagnoses of breast cancer [1].

Th e aim of DCIS treatment is to prevent progression to 

invasive carcinoma and subsequent potential for meta-

static disease and death. DCIS is treated primarily by 

surgical excision, which can be in the form of breast-con-

serving surgery (lumpectomy) or mastectomy. Although 

mastectomy is considered to be curative, the recurrence 

rate in patients with DCIS treated with breast-conserving 

surgery alone has been reported to be greater than 25% 

over 10 years [2]. As a result, patients treated with breast-

conserving surgery may also receive radiotherapy and 

hormonal therapy. Although several large clinical trials 

have reported a signifi cant reduction in recurrence rates 

with the addition of adjuvant treatments in patients 

treated with breast-conserving surgery for DCIS [2-8], 

such treatments are associated with signifi cant fi nancial 

cost and side eff ects [9]. Since nearly 75% of DCIS cases 

do not recur after surgical excision [2], there is a group of 

low-risk DCIS patients who would not gain additional 

benefi t from adjuvant treatment [10]. Accurately 

identifying this group of patients is desirable, not only to 

avoid side eff ects of treatment but also to allow better 

allocation of limited health resources.

Current prognostic markers in DCIS

Th e currently known prognostic markers of DCIS were 

comprehensively reviewed recently by Wang and 

colleagues [11] and Lari and Kuerer [12]. Known adverse 

prognostic factors include young age [2,3], symptomatic 

detection [11], and multifocal disease [11,13]. Histo patho-

logical features, such as large tumor size [11,14], high 

nuclear grade [11,13], the presence of comedo necrosis 

[11,15], positive excision margin status [11,16], negative 

hormone receptor status [11,12], and HER-2 amplifi  ca-

tion [11,14,17-19], have also been associated with increased 

risk of recurrence. Immunohistochemical detection of a 

range of biomarkers, including COX2 [20,21], Ki67 

[20,21], p16 [20-22], p53 [18,23], p21 [17], and BNIP3 

[24] as individual markers or in combination, has been 

associated with disease recurrence risk. Gene expression 

profi ling has also been reported to be useful in identifying 

tumors with increased risk of recurrence [25-27].

Unfortunately, traditional prognostic markers are not 

adequate to identify low-risk DCIS patients who may be 

spared adjuvant hormonal treatment, and currently there 

is a lack of strong level I or II evidence supporting the 

omission of adjuvant radiotherapy in selected low-risk 

cases [28]. Th us, novel biomarkers are urgently required 

to improve individual risk-profi ling and aid treatment 

selection. DNA methylation of a selected panel of genes 
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represents another potential set of markers for outcome 

prediction that are less dependent on scrupulous hand-

ling of the biopsy after resection [29] and remain stable 

even in formalin-fi xed, paraffi  n-embedded material.

Assessing DNA methylation

DNA methylation is the addition of a methyl group at the 

carbon 5 position of cytosine by the action of DNA 

methyltransferase enzymes. In mammalian cells, cytosine 

methylation occurs predominantly at CpG dinucleotides. 

Regions of high CpG dinucleotide density, known as CpG 

islands, frequently exist in the promoter region of human 

genes. Aberrant hypermethylation of these promoter 

CpG islands can result in functional silencing of genes by 

the recruitment of histone deacetylases, resulting in the 

formation of inactive chromatin. Alterations of DNA 

methy lation patterns are near uni versal in cancer. In 

particular, inactivation of tumor suppressor genes by pro-

moter hypermethylation can be a driver of tumorigenesis.

Commonly used methodologies for DNA methylation 

analysis have been comprehensively reviewed elsewhere 

[29-32] and are summarized in Table 1. As all methodo-

lo gies have their advantages and limitations, interpre-

tation of methylation results requires critical considera-

tion of the methodology used. It should be noted that 

some commonly used methodologies are prone to 

artifacts, in particular methylation-specifi c polymerase 

chain reaction (MSP) approaches, which require strin-

gent primer hybridization conditions to minimize false-

positive amplifi cation. Methods that depend on restric-

tion enzyme digestion also may give rise to false positives 

if digestion is incomplete.

In general, non-quantitative methods of methylation 

analysis should be avoided as they detect only the 

presence or absence of methylation regardless of the 

extent of methylation and will score a sample as methy-

lated even if only a small proportion of templates are 

methylated. Low-level methylation means that only a 

small proportion of the cells being analyzed (possibly not 

related to the tumor) are methylated and this may not 

result in detectable changes in gene transcription overall. 

Quantitative or semi-quantitative methodologies are 

required to diff erentiate low-level from high-level methy-

lation. Th ese include MethyLight and similar quanti tative 

MSP technologies, DNA sequencing, and methylation-

sensitive high-resolution melting (MS-HRM). It should 

also be noted that when methy lation is heterogeneous 

(that is, the individual CpGs within a given region show 

variable methylation), even quantita tive methodologies 

can give variable results [30].

Th e choice of the appropriate region to be analyzed is 

also a source of variation and can lead to major 

discrepancies in results between studies. In general, the 

best region to use for most studies is the one where DNA 

methylation is most closely correlated to the transcription 

of the gene, although this is rarely assessed.

DNA methylation in DCIS

Over the last decade, relatively few studies have 

specifi cally investigated DNA methylation in DCIS. Of 

these, most have taken a candidate gene approach, 

investigating genes known to be methylated or silenced 

in invasive breast cancers, breast cancer cell lines, or 

other cancer types [33-49]. From such studies, aberrant 

methylation has been reported in a large variety of genes, 

including every pathway involved in carcinogenesis. An 

additional table lists these genes and their reported 

methylation frequencies (Additional fi le 1). Widely diver-

gent frequencies of methylation have been reported for 

some genes, refl ecting not only diff erences in patient 

groups but also the use of diff erent non-standardized 

methodologies [29].

As with many biomarker studies in DCIS, studies 

exami ning DNA methylation have generally included 

only a relatively small number of cases. For methylation, 

the issue is further compounded since optimally only the 

neoplastic element should be assessed and this requires 

macro-dissection or micro-dissection to isolate DCIS 

from the surrounding tissues so as to avoid contami-

nation. Th e amount of DNA obtainable from DCIS 

lesions, which are commonly small in mass, is therefore 

often a limiting factor in the number of cases able to be 

included in studies. Furthermore, not all studies have 

used pure DCIS cases (cases of DCIS without associated 

invasive carcinoma) or have combined methylation 

results of DCIS occurring in the context of invasive 

ductal carcinoma (IDC) mixed with pure DCIS cases. 

Studying pure DCIS cases may be critical for several 

reasons. Th e in situ component of mixed DCIS-IDC has 

been reported to be genomically similar to the invasive 

component [50], whereas DCIS-IDC combined and pure 

DCIS have been reported to be genetically distinct [51]. 

In addition, a lesion that morphologically resembles 

DCIS may be the spread of invasive carcinoma along a 

duct and therefore would be expected to have the same 

genetic and epigenetic altera tions as invasive carcinoma.

Summary of main published studies

Th e published studies (Additional fi le  1) illustrate the 

complexity of assessing the overall picture of DNA 

methylation in DCIS. Th ese studies have investigated 

diff erent sets of genes, used diff erent methodologies, and 

examined diff erent regions of the promoter. Whereas 

most studies have assessed methylation as either present 

or absent, some have reported methylation levels as a 

continuous variable. Th ese then employ various cutoff s to 

determine the frequency and correlation of aberrant 

methylation with clinicopathological parameters.
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Earlier studies specifi cally addressing DNA methylation 

in DCIS, or methylation changes in the pro gression to 

invasive carcinoma, examined mostly a single gene [33-35, 

38-42,52] or at most a handful of genes [36,37]. More 

recently, studies have investigated panels of selected 

genes [46-49,53], and a small number of studies have 

incorporated global approaches for methylation analysis 

[54,55].

Several studies have shown an increase in the number 

of methylated genes from normal breast tissue to benign 

lesions to in situ carcinoma [47,49,56]. However, for most 

genes, methylation has been reported to occur with 

similar frequency in DCIS as in IDC [47,49]. Th is 

suggests that, in most cases, aberrant methylation occurs 

before the acquisition of an invasive phenotype and may 

not contribute to the development of invasion. Never the-

less, a small number of genes such as APC, CACNA1A, 

CDH1, FOXC1, HOXA10, MGMT, SFPR1, TFAP2A, and 

TWIST1 have been reported to show diff erences in either 

frequency or density of methylation between DCIS and 

invasive carcinoma (Table 2). Th is raises the possibility of 

using quantitative methylation of a panel of such genes to 

predict disease progression.

For example, Fackler and colleagues [37] reported 

TWIST1 methylation, as detected by MSP, to occur more 

frequently in IDC (15/27, 56%) compared with grade  3 

DCIS (7/18, 39%), grade 2 DCIS (3/12, 25%), and grade 1 

DCIS (2/14, 14%), and the diff erence in methylation 

frequency between IDC and combined grade 1 and 2 

DCIS was statistically signifi cant (P = 0.01). Douglas and 

colleagues [40] found methylation of TFAP2α, as detected 

by nested MSP, to be much more frequent in IDC (12/16, 

75%) compared with DCIS (3/19, 16%, P  <0.001), 

although one would query whether such a sensitive 

methodology would yield biologically sensible results.

More recently, Hoque and colleagues [46] examined 

the methylation status of nine genes in pure DCIS lesions 

and mixed DCIS-IDC lesions by using quantitative 

methylation-specifi c polymerase chain reaction (qMSP) 

and chose the cutoff  for aberrant methylation on the 

basis of receiver operating characteristic (ROC) curves. 

In mixed DCIS-IDC tumors, trends to higher frequencies 

of APC and CDH1 methylation were found in IDC 

compared with DCIS. APC methylation was found in 15 

(38%) of 40 DCIS samples and in 24 (53%) of 45 IDC 

samples, and CDH1 methylation was present in 12 (31%) 

of 40 of DCIS samples and 21 (47%) of 45 of invasive 

samples.

Muggerud and colleagues [47] examined promoter 

methylation in pure DCIS lesions, mixed DCIS-IDC 

lesions, early-stage IDCs, and normal breast tissue in 

order to identify potential markers of DCIS progression. 

Th e analysis was done quantitatively by bisulfi te pyro-

sequencing, and aberrant hypermethylation was defi ned 

as methylation levels two times above the standard 

deviation of the average of the normal controls. Th is 

study identifi ed ABCB1, FOXC1, PPP2R2B, and PTEN as 

recurrently methylated genes in DCIS: all had been 

previously reported in IDC. Methylation of FOXC1 was 

observed to occur with greater frequency in invasive 

tumors (15/28, 53.6%) compared with pure DCIS (6/27, 

22.2%).

An interesting fi nding of the above study [47] was 

reduced FOXC1 gene expression (as detected by quanti-

tative reverse transcription-polymerase chain reaction, 

or qRT-PCR) relative to normal breast tissue not only 

when the tumor tissue was methylated but also in those 

tumors that were unmethylated. Th is echoes numerous 

other studies in which methylation of a given gene 

promoter is seen in a subset of tumors that are more 

generally silenced for that gene. Mechanisms other than 

methylation, especially histone modifi cations, are known 

to result in gene silencing, and it has been shown that 

gene silencing may precede DNA methylation and thus 

these tumors may show varying stages along the route 

from histone-based silencing to histone and methylation-

based silencing [57].

Park and colleagues [49] investigated cases of pure 

DCIS, IDC, the non-malignant epithelial lesions atypical 

ductal hyperplasia and fl at epithelial atypia, and normal 

breast tissue for methylation of 15 genes by MethyLight. 

Th is study reported several novel methylated genes in 

DCIS (DLEC1, GRIN2B, HOXA1, MT1G, SFRP4, and 

TMEFF2). Although methylated genes accumulating at 

each step of abnormality were identifi ed, no diff erences 

in methylation frequencies between DCIS and IDC were 

found for most genes, with the exception of HOXA10, 

which was more frequently methylated in IDC (17/50, 

34%) compared with DCIS (3/35, 9%) (P = 0.007).

Moelans and colleagues [48] investigated promoter 

methylation of 25 genes in mixed DCIS-IDC cases with 

methylation-specifi c multiplex-dependent probe amplifi -

ca tion (MS-MLPA). No diff erences in the number of 

methylated genes between the DCIS and invasive compo-

nents were observed. Verschuur-Maes and colleagues 

[53] also used MS-MLPA to analyze promoter methy-

lation of a panel of 50 genes in 15 columnar cell lesions (a 

benign epithelial lesion) and co-existent DCIS (n  =  12) 

and IDC (n  =  14). Whereas the number of methylated 

genes diff ered between normal breast tissue and lesional 

tissue, no statistical diff erence in the number of methy-

lated genes was found between columnar cell lesions, 

DCIS, and IDC. However, MGMT and CACNA1A 

individually were observed to be more frequently methy-

lated in invasive cancer compared with DCIS (MGMT 

methylation: 8/14 invasive, 2/12 DCIS, P  =  0.022; 

CACNA1A methylation: 6/14 invasive, 1/12 DCIS, 

P  =  0.048). Controversially, both studies [48,53] using 
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MS-MLPA reported methylation of BRCA2 in a sizeable 

number of tumors, and this casts doubt on the specifi city 

of this methodology.

In some studies, methylation levels of genes have been 

assessed by using quantitative real-time polymerase 

chain reaction (qPCR). Th ese show that methylation 

levels are higher in IDC than DCIS. How much this 

refl ects tumor heterogeneity and how much this repre-

sents methodological issues in assessing increased densi-

ties of methylation remain uncertain. Signifi cantly higher 

SFRP1 methylation levels have been observed in IDC 

compared with DCIS [49]. Similarly, Muggerud and 

colleagues [47] found signifi cantly higher FOXC1 methy-

la tion levels in IDC (P  =  0.007) and mixed tumors 

(P  =  0.001) compared with pure DCIS. Higher methy-

lation levels of MGMT (P  =  0.019) [53] and CDH1 

(P  <0.04) [46] in IDC compared with DCIS have also 

been reported.

Whereas the above studies examined gene-specifi c 

DNA methylation at stages of breast cancer progression, 

Lee and colleagues [44] examined diff erences in DNA 

methylation in DCIS between American and Korean 

women. Quanti tative multiplex methylation-specifi c 

poly merase chain reaction (QM-MSP) was used to assess 

methylation of a panel of 10 genes in DCIS lesions from 

52 American and 48 Korean women and normal breast 

tissue. Although Korean women have a markedly lower 

incidence of DCIS, the patterns of methylation were 

similar in the two groups, indicating that similar mecha-

nisms of pathogenesis underlie DCIS in the two 

populations.

Global methylation studies of DCIS

Recently, studies have taken a global methylation approach 

to investigating DNA methylation in DCIS. Tommasi and 

colleagues [55] identifi ed 108 aberrantly methylated CpG 

islands by methylated CpG island recovery assay-assisted 

microarray analysis (MIRA) in early-stage breast cancer 

and six cases of undissected DCIS. Candidate genes were 

identifi ed on the basis of these methylated CpG islands, 

and six novel aberrantly methylated genes in DCIS 

(TLX1, HOXB13, HNF1B, GFI1, NR2E1, and HLXB9) 

were verifi ed by combined bisulfi te restriction analysis 

(COBRA). However, though identifi ed as novel, these 

were not validated in an independent cohort of DCIS to 

assess their signifi cance or used to examine the issue of 

recurrence or progression.

Another recent study used a global methylation 

approach to identify methylated genes on a panel of low-

grade invasive breast cancer and in situ cancer and then 

Table 2. Diff erentially methylated genes between ductal carcinoma in situ and infi ltrating ductal carcinoma 

Gene Type of diff erence DCIS versus IDC Reference

APC Frequency of methylation IDC 24/45 (53%)

Mixed DCIS-IDC 15/40 (38%)

Hoque et al. [46] (2009) 

CACNA1A Frequency of methylation IDC 6/14 (42.9%)

DCIS 1/12 (8.3%)

P = 0.048

Verschuur-Maes et al. [53] (2012) 

CDH1 Frequency of methylation

Level of methylation

IDC 21/45 (47%)

Mixed DCIS-IDC 12/40 (31%)

Higher methylation levels in IDC compared with mixed DCIS-IDC, P <0.04

Hoque et al. [46] (2009) 

FOXC1 Level of methylation Higher methylation levels in IDC compared with DCIS

IDC versus pure DCIS P = 0.007

IDC versus mixed DCIS-IDC P = 0.001

Muggerud et al. [47] (2010)

HOXA10 Frequency of methylation IDC 17/50 (34%)

DCIS 3/35 (9%)

P = 0.007

Park et al. [49] (2011) 

MGMT Frequency of methylation

Level of methylation

IDC 8/14 (57.1%)

DCIS 2/12 (16.7%)

P = 0.022

Higher methylation levels in IDC compared with DCIS, P = 0.019

Verschuur-Maes et al. [53] (2012) 

SFRP1 Level of methylation Higher methylation levels in IDC compared with DCIS, P = 0.035 Park et al. [49] (2011) 

TFAP2A Frequency of methylation IDC 12/16 (75%),

DCIS 3/19 (16%), P <0.001

Douglas et al. [40] (2004) 

TWIST1 Frequency of methylation IDC 15/27 (56%)

Grade 1-2 DCIS 5/26 (19%)

P = 0.01

Fackler et al. [37] (2003) 

DCIS, ductal carcinoma in situ; IDC, infi ltrating ductal carcinoma.
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profi led selected novel genes against a small number of 

additional in situ and invasive breast cancers [54]. Th e 

hypermethylated regions, identifi ed by methyl-CpG 

immuno precipitation and human CpG island arrays, 

were used to select candidate genes on the basis of the 

extent and frequency of methylation changes and the 

proximity of these changes to the gene promoters. 

Methy lation of these selected genes was then analyzed by 

Table 3. Relationship between methylated genes and previously reported prognostic and predictive factors in ductal 

carcinoma in situ 

 Methylated
Parameter gene Relationship Data Reference

Nuclear grade APC Higher methylation frequency in high-grade 

DCIS compared with low/intermediate-

grade DCIS

Low/intermediate-grade DCIS 15%

High-grade DCIS 60%

P = 0.006

Park et al. [49] (2011)

CCND2 Higher levels of methylation with increasing 

Van Nuys grade

P <0.001 Lehmann et al. [36] (2002) 

CDH1 Increased methylation frequency with 

increasing nuclear grade in Korean patients

Low-grade DCIS 0%

Intermediate-grade DCIS 27%

High-grade DCIS 44%

P <0.05

Lee et al. [44] (2008)

CDKN2A Higher levels of methylation with increasing 

nuclear grade, although still low-level 

methylation (<10%)

Low-grade DCIS 1%

Intermediate-grade DCIS 4%

High-grade DCIS 7%

P <0.002

Moelans et al. [48] (2011) 

GSTP1 Higher levels of methylation with increasing 

nuclear grade

Low-grade DCIS 6%

Intermediate-grade DCIS 26%

High-grade DCIS 28%

P <0.002

Moelans et al. [48] (2011)

RARB Higher methylation frequency in high-grade 

DCIS compared with low/intermediate-

grade DCIS

Low/intermediate-grade DCIS 15%

High-grade DCIS 53%

P = 0.027

Park et al. [49] (2011) 

ER status ABCB1 Higher levels of methylation in ER-positive 

tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.003

Muggerud et al. [47] (2010) 

FOXC1 Higher levels of methylation in ER-positive 

tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.009

Muggerud et al. [47] (2010) 

GSTP1 Higher levels of methylation in ER-positive 

tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.003

Muggerud et al. [47] (2010) 

RASSF1A Higher levels of methylation in ER-positive 

tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.003

Muggerud et al. [47] (2010) 

PR status GSTP1 Higher levels of methylation in PR-positive 

tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.009

Muggerud et al. [47] (2010) 

HER2 amplifi cation DLEC1 Higher frequency of methylation in 

HER2-amplifi ed DCIS

Non-HER2-amplifi ed 26%

HER2-amplifi ed 75%

P = 0.032

Park et al. [49] (2011) 

Ki67 index ABCB1 Higher methylation levels in tumors with 

Ki67 <10%

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.006

Muggerud et al. [47] (2010) 

TP53 mutation status ABCB1 Higher levels of methylation in TP53 

wild-type tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.015

Muggerud et al. [47] (2010) 

FOXC1 Higher levels of methylation in TP53 

wild-type tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.006

Muggerud et al. [47] (2010) 

PPP2R2B Higher levels of methylation in TP53 

wild-type tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.025

Muggerud et al. [47] (2010) 

PTEN Higher levels of methylation in TP53 

wild-type tumors

Combined results of pure DCIS, 

mixed DCIS, and IDC cases, P = 0.01

Muggerud et al. [47] (2010) 

DCIS, ductal carcinoma in situ; ER, estrogen receptor; IDC, infi ltrating ductal carcinoma; PR, progesterone receptor. 
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mass spectrometry on a validation set that included 

seven DCIS cases. Eleven genes (BCAN, HOXD1, 

KCTD8, KLF11, NXPH1, PCDH10, POU4F1, RYR2, 

SIM1, TAC1, and TCF7L1) were validated as being 

aberrantly methylated in DCIS and IDC compared with 

normal breast tissue. However, methylation levels of 

these 11 genes in DCIS were not statistically diff erent 

compared with invasive tumors for any of the genes.

DNA methylation as a predictive and prognostic 

marker in DCIS

In invasive breast carcinoma, the methylation status of 

certain genes has been reported to be associated with 

survival [58-62], risk of metastatic disease [63-66], risk of 

disease recurrence [62,64], and response to adjuvant 

treatment [60,67,68]. However, in DCIS, no direct link 

between aberrant methylation and risk of recurrence, 

risk of progression to invasive disease, or likelihood of 

response to adjuvant therapy has been reported.

However, previous reports indicate associations 

between certain methylated genes and known predictive 

factors such as hormone receptor status and HER2 

amplifi cation and adverse prognostic markers such as 

high nuclear grade, high proliferation index, TP53 muta-

tions, and HER2 amplifi cation [36,44,47-49] (Table  3). 

Although associations between methylated genes and 

currently known prognostic and predictive factors suggest 

that DNA methylation may have a role as a biomarker in 

DCIS, it has to be noted that these associations are the 

results of single studies that had relatively small numbers 

and that used diff erent methy lation analysis methodolo-

gies. Importantly, these studies were not designed to 

investigate the relationship of methy la tion with clinical 

outcome. Further well-powered studies on larger gene 

sets with detailed clinical data are required to establish 

the role of DNA methylation as a prognostic and 

predictive marker in DCIS.

Future outlook

Th ere are inherent diffi  culties in conducting methylation 

studies in DCIS and this is due in large part to the nature 

of the disease itself. Pure DCIS cases are relatively rare 

compared with DCIS occurring in the context of invasive 

carcinoma, fresh tissue is almost never available, and 

usually only small amounts of formalin-fi xed, paraffi  n-

embedded tissue are available as a source of DNA. In 

addition, the use of robust methodologies for DNA 

methy lation analysis is essential for the appropriate inter-

pretation of methylation status.

Current knowledge of DNA methylation in DCIS is 

based largely on studies employing a candidate gene 

approach to methylation analysis. Global approaches, 

involving either high-throughput microarray-based 

assays such as the Infi nium platform or one of a variety of 

approaches using the power of massive parallel 

sequencing (MPS), are now required.

Th e application of MPS platforms in genome-wide 

methylation analysis and their relative advantages and 

disadvantages have been comprehensively reviewed by 

several authors [69-73]. MPS has already been used for 

genome-wide methylation analysis of non-small cell lung 

cancer tissue [74], colon cancer tissue [75], prostate 

cancer cell lines and tissue [76], and breast cancer cell 

lines [77-79].

In addition to the identifi cation of aberrant DNA 

methylation in the DCIS genome, the eff ect of methy-

lation on gene expression and, importantly, clinical out-

comes needs to be addressed. As DCIS is a heterogeneous 

disease with relatively few disease events occurring over 

decades, studies involving large numbers of pure DCIS 

cases with detailed clinical annotation and long-term 

follow-up are required to establish the validity of aberrant 

methylation as a predictive and prognostic biomarker in 

DCIS.

Conclusions

Identifying patients in whom DCIS will recur or progress 

to invasive carcinoma after surgical excision would allow 

appropriate allocation of limited health resources and 

avoid over-treatment of patients at low risk of further 

disease. DNA methylation has been found to be a predic-

tive and prognostic marker in many forms of cancer. 

Although studies have shown that DNA methylation 

exists and may play a role in determining outcome in 

DCIS, we currently have an incomplete understanding of 

the role of DNA methylation in this disease. Studies 

specifi cally designed to investigate the relationship 

between DNA methylation and clinical outcome in DCIS 

are required to establish the validity of aberrant DNA 

methylation as a predictive and prognostic biomarker in 

DCIS.

Additional fi le
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